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Abstract:  To achieve  an  optimized  design  of   beams and  columns,  sometimes  a  tapered,  curved  element,
honeycomb or truss beam will be used in the structural model. In recent development of aseismic steel structure,
a  reduced  flange  beam  is  used  to  control  the  location  of  energy  dissipation.  This  approach  will  require
development of new frame element stiffness matrix that due to its complexity may not have explicit equation
available.  In  this paper,  a general  approach to derive a new stiffness matrix of 3D frame element with any
longitudinal shape, void pattern and shear deformation will be given using Flexibility approach. Stiffness matrix
derived from flexibility matrix using Symbolic math and Gauss Quadrature Numerical Integration are also given.
Sample problems also given to verify the resulted stiffness matrix. Using this procedure, a new stiffness matrix
can be derived for any section with any shape of tapered element.

Keywords:  Tapered  Section,  Honeycomb section,  Reduced  Flange beam,  Frame element  stiffness,  Explicit
stiffness formulation, Gauss Quadrature Numerical Integration

Introduction

A tapered space frame element is a 3D space frame element with non-prismatic section. The section
depth or width or both depth and width may varies along its length linearly or parabolically. Flange
width can changes in certain shape as in a reduced flange beam, or the frame can have holes at its web,
as in cellular beam or castelated beam. For a prismatic frame, the standard stiffness matrix can be
defined by explicit equations. Due to its complexities and difficulties to derive the stiffness matrix for
tapered section, the standard stiffness matrix usually will be modified from standard stiffness matrix
using certain modification factor. This approach is a very simplified one, and can only be applied for
certain case of tapered section. In this paper, a general formulation of tapered space frame element will
be derived.  The formulation can be used to derive the required stiffness matrix straightforwardly,
resulted in explicit equation for simpler cases, or must be computed using numerical integration for
more complex cases.

Fig.1 Several Tapered Frame Elements
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Basics of The Flexibility Method (Force Method)

The Flexibility Method is  a generalization of the Maxwell-Mohr method developed in 1864. In this
approach, we will release the right node of a fixed end frame element, and apply a unit load in certain
direction, and find the displacement in certain direction. The resulted displacement is the flexibility
terms that can be used to build the flexibility matrix. The flexibility matrix then can be used to derived
the  required  stiffness  matrix  using  transformation  matrix.  Although  the  flexibility  method  is  not
suitable  for  computerized solution,  it  can be used to  derived the flexibility terms easily even for
complex sections, because the displacements can be computed using virtual energy approach, using
the principle that external work must be equal to internal work. The internal work can be computed
using integration of axial, bending, and shear stress and strain along the length of the member.

Member flexibility matrices will now be developed for non-prismatic members that are restrained at
left node j and free at right node k. Direction of local member axis Ym is chosen so that major bending
takes place in the Xm-Ym plane. Six kinds of end -actions are applied at right node k of the member :
Unit load AM1,AM2,AM3 (positive in Xm,Ym,Zm directions),  Unit torsion AM4 (positive in Xm
direction), Unit bending moment AM5,AM6 (positive in Ym and Zm directions) shown in figure 2.
For a space frame, the flexibility matrix will be a 6x6 matrix relating AM load vector to corresponding
displacement Dm.

Fig.2. Flexibility terms for space frame element (Weaver, 1980)

For example, Fm11 is the axial displacement caused by a unit load in X direction, that can be
computed as integration of axial stress and axial strain along the length of the element.

(1)

While Fm22 is a displacement in 2-2 direction (Ym direction) caused by a unit load acting in
Ym direction that can be computed as integration of bending stress and bending strain along
the length of the element. The second term is for the contribution of shear strain.

(2)



Using the same approach, the complete Flexibility terms will be :

(3)

For standard prismatic element, values of A, Ix, Iy, Iz, fy, fz will be constants along the element, and
the above integrals will give the familiar explicit  equation of flexibility terms as follows (Weaver,
1980):

Fig.3. The Familiar flexibility terms for a prismatic space frame element

For tapered frame elements, values of A, J, Iy, Iz, fy, fz will vary along the length of the element, so
the values will contains terms of x, resulted in higher polynomial equation. Thus the explicit equation
will be much complex and may not be available, in this case, numerical integral will be necessary to
compute the terms. 
Standard equation for section properties will be used, but the values for section size will be functions
in term of x variable.



Table 1. Standard equation for section properties (Weaver, 1980, Roark, 2002)



Parabolic tapered frame with h1 > h2

We will derive an equation for h in term of x for a parabolic tapered frame height with h1 > h2 as
follows:

Fig.4. Parabolically Tapered Height

Assuming the boundary condition y=0 at x=0,  q > 0 for x=0, and  q=0 for x=L, we will  get the
following equation:

Substitute b into the equation, we will get a as follows :

And the final equation of y in term of x is :

(4)

using h = h1-y, we will get:



(5)

Using the same procedure for the other case (h1 < h2), where y=h2-h1 at x=0, q > 0 for x=L, and  q=0 
for x=0, we will get the following equation for h:

(6)

So, the integral equations for flexibility terms will be computed using A, J, Iy, Iz computed using h as
a function of x as defined above. For certain shape, even shear area factors fy and fz will also depend
on h and furthermore on x value. Different function of h and b can be derived for different cases, and
in case  of  segmented frame,  integration can be  conducted for  each segment  with different  shape
modifier functions.

For h varies linearly:

h = h1 + (x/L)(h2-h1)

For frame with linear haunches at both ends with haunch length = L1 and h1 < h2 :

x < L1  : h = h2 – (x/L1) (h2-h1)
             x > (L-L1) : h = h2 – ((1-x/L)/L1)(h2-h1)
(7)
             L1 <= x <= (L-L1) : h = h1

For frame with parabolic haunches at both ends with haunch length = L1 and h1 < h2 :

x < L1  : h = h2 – ((h1-h2)/(L1*L1))*x*x + 2*(h1-h2)*x/L1
             x > (L-L1) : h = h1+ (h2-h1)((x-(L-L1))/L1)^2
(8)
             L1 <= x <= (L-L1) : h = h1

Explicit Form of Flexibility Terms

For  simple  tapered  element,  it  is  possible  to  get  a  not  very complicated  explicit  formulation  for
flexibility terms. For example, for rectangular tapered element varies in height, we can use a symbolic
math program such as MAXIMA or Mathematica, to evaluate the flexibility integrals symbolically to
get the following explicit equation (Tena-Colunga, 1996) :

FM11 =      (9)

FM22,b = (bending)

   
     (10)



FM22,s = (shear)

      (11)

But for more complicated section, such as Wide Flange section, the resulted explicit equation, if 
existed, is very complex, lengthy and will require many multiplications:

FM11 = 
       (12)

FM22,b = 

(13)

In this case, a numerical integration will be more effective and easier to calculate. Please notice that
for cases with variable form factor, more simpler equations can be approximated using constant form
factor of 0.205, which is the average range of b/h ratio from 0.5 to 2.0.

Numerical Integration solution for Flexibility Terms

Among various  numerical  integration  methods  available,  the  constant  spaced Bode's  Integral  and
variable  spaced  Gauss  Quadrature  Integral  are  the  most  effective  methods  recommended.  Using
Bode's Integral, which is a 5 points Newton-Cotes Methods, about 64 division will be needed, while
using Gauss Quadrature, 8 to 10 Gauss points will be needed. Function for Bode's rule  is as follows
(Pavel, 2011):

(14)

Using Gauss Quadrature, we must change the integration variable from x to normalized variable s,
with the following relationship:



x = (L/2) (1+s)        (15)
and dx = (L/2) ds          (16)

The integral equation then will be executed as summation of function values evaluated at Gauss 
points:

(17)

Using standard Gauss Quadrature procedure with boundary from -1 to +1, we must transform the 
function and differential form f(x) to f(s) and from dx to ds using equation (15) and (16).

Values for Gauss points and its weight for n=1 to 10 are given below:

Table 2: High precision Gauss Constants to 25 decimal (Pavel, 2011)



Derivation of Stiffness Matrix from Flexibility Matrix

The 12x12 Stiffness Matrix of an element can be derived from The 6x6 Flexibility matrix using a
simple procedure as follows (Weaver, 1980):

First, we will derive Stiffness sumatrix Smkk as matrix inverse of Fmkk :

Smkk = [Fmkk]-1    (18)

The inverse of Fmkk is given below:
       (19)

Smkk =

The complete Stiffness Matrix of a space frame element is :

SM =    (19)

The other three submatrices can be found by the type of axis transformations and static equilibrium,
using tranformation matrix Tjk as follows (Weaver, 1980) :

Tjk =        (20)

Smjk = -Tjk Smkk        (21)

Smkj = SmjkT = -Smkk TjkT        (22)



and
Smjj = -Tjk Smkj = Tjk Smkk TjkT        (23)

In Tena-Colunga's paper (1996), different  equations for Smjk and Smjj are given,  which can give
incorrect  stiffness matrix  compared to the matrix  transformation method used above.  Smjk is  not
necessary to be symmetric, but the final stiffness matrix SM is always symmetric.

Smjj :         (24)

Case Study

A 6m concrete cantilever beam B30/60 with various tapered conditions loaded with distributed load of
1000 kg/m are analyzed using the above formulation and the tip displacement results are shown in the
graph and Table 3 below.

The standard Hermitian formulation without  shear  deformation gives  tip  deflection of  -1.360 cm,
while if we use shear deformation, the tip deflection will be -1.373 cm. The third beam is linearly
tapered height beam with tip displacement of -0.520cm, and the fourth one is parabolically tapered
element with -0.630 cm displacement. The fifth beam is using linearly tapered width that gives -0.773
cm deflection. 
All tapered beams have been analyzed using tapered element derived from general formulation given
above. Using this approach, we can evaluate various type of tapered shape by changing only certain
parameters controlling the tapered shape



Table 3. Tip displacements of various cantilever beams

No. Description b1 (cm) h1 (cm) b2 (cm) h2 (cm) Displacement
(cm)

1 Standard Beam, no shear deformation 30 60 30 60 -1.36

2 Standard  Beam,  with  shear
deformation

30 60 30 60 -1.37

3 Linearly Tapered Height Beam 30 90 30 60 -0.52

4 Parabolically Tapered Height Beam 30 90 30 60 -0.63

5 Linearly Tapered Width Beam 60 60 30 60 -0.77

Discussion

The given  procedure above is  straightforward  and easily to  apply to  various  type  of  section and
tapered pattern. The procedure also provide two alternative methods to compute the required stiffness
matrix,  the  explicit  form  using  symbolic  math  program,  and  numerical  method  using  Gauss
Integration. The use of 8 points Gauss Integration is recommended to get  accurate solution to 16
digits.
From above study case, it is found that a tapered element is very effective in reducing tip displacement
with only small increase of weight. The above formulation also allow engineers to use only 1 element
to model accurately a complex shape tapered element. This approach is very useful  in large steel
building with all beam members having “voute” (haunch beam or tapered beam) at both ends, beams
with honeycomb web shape, or beams with reduced flange shape. Without using this approach, each
beam will require at least twice number of nodes, that will increase analysis time and storage space.

Conclusions

1. For a complex tapered shape element, we can use a single element stiffness modeled derived
from flexibility matrix using general formulation given above

2. The single element stiffness model will give accurate result compared to segmented model
approach without adding extra DOF

3. Explicit form of stiffness matrix for certain shape can be derived from general formulation
above using Symbolic Math Program

4. More  complex  section  type  and  tapered  shape  may  not  have  explicit  form and/or  more
effective to be solved using Gauss Quadrature Numerical Integration

5. At least 8-points Gauss Quadrature Numerical Integration must be used to get result with 16
digits accuracy

Recommendations and Further Study

1. Stiffness matrix for single element frame with tapered shape is now available and can be used
without additional DOF

2. Use the given stiffness matrix for analyzing beams at both ends, or reduce flange width, or
beams with honeycomb width, to get more accurate results efficiently

3. Extend  the  general  formulation  above  to  compute  frame  element  end  forces  to  get  the
equilibrium of forces

4. Extend the general formulation above for space frame element with linear/nonlinear nodal
moment spring
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